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Abstract—The jointly optimized sampling rate and quantiza-
tion precision in A/D conversion is studied. In particular, we
consider a basic pulse code modulation A/D scheme in which a
stationary process is sampled and quantized by a scalar quantizer.
We derive an expression for the minimal mean squared error
under linear estimation of the analog input from the digital
output, which is also valid under sub-Nyquist sampling. This
expression allows for the computation of the sampling rate that
minimizes the error under a fixed bitrate at the output, which is
the result of an interplay between the number of bits allocated
to each sample and the distortion resulting from sampling. We
illustrate the results for several examples, which demonstrate the
optimality of sub-Nyquist sampling in certain cases.

I. INTRODUCTION

Representing an analog signal by a sequence of bits leads
to a fundamental trade-off between the minimal distortion
in the reconstruction of the signal from this sequence and
its bitrate. This is described by the distortion-rate function
(DRF) of the analog source. While the DRF gives the minimal
distortion only as a function of the bitrate of the digital
representation, in practice, A/D conversion schemes involve
sampling and quantization. Therefore, hardware limitations in
sampling and quantization determine current A/D technology.
For instance, a key idea in determining the analog DRF
is to map the continuous-time process into a discrete-time
process based on sampling at or above the Nyquist frequency
[1, Sec. 4.5.3]. However, since wideband signaling and A/D
technology limitations can preclude sampling signals at their
Nyquist rate [2], an optimal source code based on such a
discrete-time representation may be impractical in certain
scenarios.

An approach combining sampling and source coding, in
which an analog Gaussian process is described from a rate-
limited version of its samples, was considered in [3]. The
main finding of [3] is that sampling at or above the Nyquist
rate may not be necessary in order to achieve the DRF
D(R). Specifically, for each bitrate R, there exists another
fundamental rate fRD which may be smaller than the Nyqusit
rate, such that sampling at the rate fRD is enough to achieve
D(R). In addition, [3] proves the existence of a range of
sampling frequencies for which distortion due to sampling can
be traded with distortion due to lossy compression, without
affecting the overall distortion sum. This general result serves
as the motivation for the present work, where we seek to derive
the optimal trade-off between sampling rate and quantization
precision to minimize distortion in A/D converters with fixed
bitrate outputs.

The optimal rate-distortion performance derived in [4] can
be achieved by a vector quantizer applied to an estimate of
the source from the samples. However, it was shown in [5]
that as the sampling rate goes to infinity, the rate-distortion
performance of a scalar quantizer may be dramatically inferior
compared to that of a vector quantizer. Indeed, under a fixed
bitrate at the output, a faster sampling frequency results in
a lower quantization precision, and vice versa. Hence, there
may be some A/D converters for which sub-Nyquist sampling
minimizes distortion. Our results will thus indicate when
sampling at Nyquist or sub-Nyquist rates yields minimum
A/D distortion.

A very basic A/D conversion scheme is obtained by
sampling and quantizing each sample using a scalar quantizer,
which is referred to as pulse code modulation (PCM) [6].
Under this scheme, the overall bitrate R in the resulting
digital representation is the product of the sampling rate fs
and the quantizer bit precision q. In this work we analyze
A/D conversion via PCM as a source coding scheme: we
consider the minimal error as a function of the bitrate R
by assuming a statistical model on the input process and
mean squared error (MSE) as our performance metric. The
quantization distortion is modeled as an additive white noise
whose magnitude decreases exponentially with the bits-per-
sample q, where q = R/ fs. While this model was found to
be accurate when the quantizer resolution is relatively high
[7], the white noise assumption may not hold under a very
coarse quantizer. Nevertheless, an analysis of the minimal
MSE from single-bit measurements which does not use the
white noise model provided MSE improvement of only up
to 3db per octave in the bitrate compared to analysis using
the white noise model [8]. This implies that the results in
this work would suffer only a minor change under an exact
model of the low-resolution quantizer. This approximation
does not affect our conclusions which are based only on the
scaling behavior of the MSE as a function of the sampling
rate and the quantizer resolution. We elaborate more on this
approximation in Section II.

When bitrate considerations are ignored, the PCM A/D con-
version scheme considered here and higher order schemes such
as Sigma-Delta modulation (Σ∆M) benefit from oversampling
(sampling above the Nyquist rate of the input signal), which
reduces in-band quantization noise. This increases the effective
resolution of the quantizer, which is usually taken to be very
coarse (typically 1-bit). While these modulators are attractive
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due to their relatively cheap hardware implementation [9],
high correlation between consecutive time samples taken at
high sampling rates implies that conventional oversampled
modulations cannot lead to an efficient memory utilization
without further coding of the samples [10]. Even with the
additional coding suggested in [11], the sampling rate required
to approach the DRF is still very high compared to sampling
at the Nyquist rate. Other oversampled A/D conversion ap-
proaches which achieve exponential error reduction with the
bitrate were proposed in [12], but so far have not been real-
ized in practice. Since A/D technology limits sampling rates,
oversampled A/D may not be practical for applications with
signals of wide bandwidth, such as white-space estimation in
cognitive radio systems [13], [2]. Moreover, high sampling
rates increase the memory requirements of the A/D and the
system power consumption.

These challenges in A/D technology motivate us to
understand how to sample in a memory-efficient manner.
In order to do so, we impose a constraint on the bitrate at
the output of the system and examine the trade-off between
sampling rate and distortion. We show that under certain
assumptions on the signal, the rate-distortion function can be
approached by sampling below the Nyquist rate.

The main result of this paper is an expression for the
minimal MSE (MMSE) in A/D conversion using PCM under
a fixed bitrate R at the output of the modulator. The result
is valid for any sampling rate, regardless if the input is
band-limited or not. This result allows us to compute the
sampling rate f ?s that minimizes the MMSE for this bitrate.
To our knowledge, this is the first analysis of A/D conversion
under a fixed bitrate in the sub-Nyquist regime. We show
that in the case where the input signal is band-limited, f ?s is
obtained at the Nyquist rate or below it. This result proves
the intuition that super-Nyquist sampling is never optimal.
The value of f ?s depends on the power spectrum distribution
(PSD). The more uniform this distribution, the closer f ?s is
to the Nyquist rate. By considering several example input
signals, we compare the behavior of f ?s as a function of R
to the minimal sampling rate fRD, as defined in [3], that is
needed to achieve the quadratic Gaussian DRF without any
constraints on the quantizer.

The rest of this paper is organized as follows: in Sec-
tion II we provide the relevant background on PCM, MSE
estimation in sampling and the distortion-rate function of
sampled processes. Our main results and discussion are given
in Section III. Concluding remarks are provided in Section IV.

II. BACKGROUND AND PROBLEM FORMULATION

A. Distortion-Rate Theory of Sampled Processes

An information theoretic bound on the MMSE in any A/D
conversion scheme whose output bitrate is constrained to R bits
per time unit is given by the DRF of the analog source. For a
Gaussian stationary process X(·), this DRF is obtained in terms
of SX ( f ), the PSD of X(·), by a parametric expression derived

X(·) Ha(·)

fs

X̂(·) Dec Enc

Y [·]

R

Fig. 1: Combined sampling and source coding model.

fs/2 fB

mmseX ( fs)

lossy compression error

preserved spectrum

θ

f

SX ( f )

Fig. 2: Reverse waterfilling interpretation of (3): The function
D( fs,R) of a unimodal SX ( f ) and zero noise is given by the
sum of the sampling error and the lossy compression error.

by Pinsker [14] with a reverse waterfilling interpretation. A key
idea in proving the source coding theorem which ties Pinsker’s
expression to the A/D conversion problem is to map X(·) into
a discrete-time process based on sampling above its Nyquist
frequency fNyq [1, Sec. 4.5.3]. The situation in which sampling
at the Nyquist rate fNyq cannot be achieved due to system
constraints [2] gives rise to the combined sampling and source
coding problem depicted in Fig. 1 and solved in [4]. In this
setting, X(·) is described by a rate R version of its sub-Nyquist
samples Y [·]. The minimal distortion in reconstruction taken
over all such descriptions is denoted as D( fs,R). Under the
assumption that SX ( f ) is unimodal and Ha( f ) is lowpass with
cutoff freqeuncy fs/2, D( fs,R) takes the following form [4,
Eq. 9]

R(θ) =
1
2

∫ fs
2

− fs
2

log+ [SX ( f )/θ ]d f , (1a)

D(θ) =mmseX ( fs)+
∫ fs

2

− fs
2

min{SX ( f ),θ}d f , (1b)

where log+(x) = max{0, log(x)} and

mmseX ( fs),
∫
R\
(
− fs

2 , fs
2

) SX ( f )d f . (2)

A waterfilling interpretation of (1) is illustrated in Fig. 2.
Assume that X(·) is band-limited to fB. If fs > 2 fB, then

there is no loss of information in the sampling process, in
which case we have

D( fs,R) = D(R), fs ≥ 2 fB, (3)
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where D(R) is the (standard) quadratic DRF of the analog
Gaussian source X(·), which is obtained by the celebrated
reverse waterfilling expression of Pinsker [14]. In fact, it
follows from [3] that if the energy of X(·) is not uniformly
distributed over its bandwidth, then there exists a source
coding rate R and a minimal sampling rate fRD < 2 fB such
that (3) holds for all fs ≥ fRD. This critical sampling rate can
be computed by the equation

R =
1
2

∫ fRD
2

− fRD
2

log+ [SX ( f )/SX ( fRD)]d f . (4)

It is shown in [3] that fRD is monotonically increasing in R
and approaches the Nyquist rate 2 fB as R goes to infinity.
This result can be seen as an extension of the Shannon-
Whittaker-Kotelnikov sampling theorem to the scenario where
a finite bitrate constraint is imposed [15].

It also follows from [4] that a distortion arbitrarily close to
D( fs,R) can be achieved by the following scheme:

(i) Filter-bank sampling at average frequency fs with op-
timized pre-sampling filters and a sufficient number of
sampling branches.

(ii) Vector quantizer with resolution of Q = nR/ fs bits,
where n is the block length.

B. Problem Formulation: Pulse Code Modulation

In this paper we study the distortion-rate performance of an
A/D scheme which is similar to the one that achieves D( fs,R),
where the vector quantizer is replaced by a scalar quantizer of
resolution q=R/ fs bits. This setting corresponds to the system
model described in Fig. 3. The input process is an analog wide-
sense stationary (WSS) process X(·)= {X(t), t ∈ R} with PSD

SX ( f ),
∫

∞

−∞

E [X(t + τ)X(τ)]e−2πiτ f dτ.

The discrete-time process Y [·] = {Y [n], n ∈ Z} is obtained
by uniformly sampling the filtered process at frequency fs,
namely

Y [n], (X(·)?ha(·))(n/ fs), n ∈ Z,

where ha(t) is the impulse response of the analog filter Ha( f ).
Let Ŷ [n] be the process at the output of the quantizer at time

n, and denote by η [n] the quantization error, i.e.,

Ŷ [n] = Y [n]+η [n], n ∈ Z. (5)

The variance of η [n] is proportional to the size of the quanti-
zation bins, and decreases exponentially with the bit resolution
q, provided the size of the bins decreases uniformly [16]. The
non-linear relation between the quantizer input and its output
complicates the analysis and usually calls for a simplifying
assumption that linearizes the problem. A common assumption
which we will adopt here is:
(A1) The process η [·] is i.i.d, uncorrelated with Y [·] and with

variance
σ

2
η =

c0

(2q−1)2 . (6)

X(·) Ha( f )

fs

X̂(·) linear MMSE
reconstructor

Q
q-bit scalar
quantizer

Y [·]

R = fsq

Fig. 3: System model of A/D with a scalar quantizer.

This assumption implies that the PSD of η [·] equals
Sη

(
e2πiφ

)
= c0

(2q−1)2 for any φ ∈ (−0.5,0.5). The constant c0

depends on statistical assumptions on the input signal. For
example, if the amplitude of the input signal is bounded within
the interval (−Am/2,Am/2), then we can assume that the
quantization bins are uniformly spaced and c0 = Am

12 . If the
input is Gaussian with variance σ2 and the quantization rule
is chosen according to the ideal point density allocation of the
Lloyd algorithm [17], then [18, Eq. 10]

c0 =
π
√

3
2

σ
2. (7)

There exists a vast literature on the conditions under which
assumption (A1) provides a good approximation to the sys-
tem behavior. For example, in [16] it was shown that two
consecutive samples η [n] and η [n + 1] are approximately
uncorrelated if the distribution of Y [·] is smooth enough,
where this holds even if the sizes of the quantization bins
are on the order of the variance of Y [·] [19]. This justifies
the assumption that the process η [·] is white. Bennett [20]
derived the following conditions under which η [·] and Y [·]
are approximately uncorrelated: smooth PSD of Y [·], uniform
quantization bins and a high quantizer resolution q. Since
in our setting we are also interested in the low quantizer
resolution regime, a better justification for this approximation
is required. This will be the result of the following proposition,
proof of which can be found in Appendix A.

Proposition 1. The MMSE in estimating X(·) from Ŷ [·] in (5)
is not smaller than the MMSE in estimating X(·) from the
process

Ỹ [·], Y [n]+ η̃ [n], n ∈ Z,

where η̃ [·] is a stationary process possibly correlated with Y [·],
with PSD Sη̃

(
e2πiφ

)
= Sη

(
e2πiφ

)
.

Proposition 1 implies that the assumption of an uncorrelated
quantization noise and input signal can only increase the
error, compared to an estimation scheme under the same
marginal noise statistics that also takes into account the
correlation between the samples and the quantization noise.
We conclude that the analysis under assumption (A1) yields
a good approximation to the true error if the quantizer
resolution q is high, and provides an upper bound when q
is low. The tightness of this upper bound can be learned
from [21], where it was shown that PCM with a single bit
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X(·) Ha( f )
fs

+
Y [n]

Ŷ [n]

η [n]

Fig. 4: Sampling and quantization system model.

quantizer leads to a reduction in the MSE of no more than
3db per octave more than an analysis that assumes (A1).

Under (A1), the relation between the input and the output
of the system can be represented in the z domain by

Ŷ (z) = Y (z)+η(z). (8)

This leads to the following relation between the corresponding
PSDs:

SŶ

(
e2πiφ)= SY

(
e2πiφ)+Sη

(
e2πiφ)

= fs ∑
k∈Z

SX ( f − fsk) |Ha( f − fsk)|2 +σ
2
η . (9)

A system that realizes the input-output realtion (8) is given
in Fig. 4, where, in accordance with (A1), η [·] is white noise
independent of X(·).

C. MMSE Estimation

We are interested in the MMSE in estimating X(·) from its
noisy samples Ŷ [·]. Namely, the minimal value of

lim
T→∞

1
2T

∫ T

−T
E
(
X(t)− X̂(t)

)2 (10)

over all possible reconstruction methods of X(·) from Ŷ [·] of
the form

X̂(t) = ∑
n∈Z

w(t,n)Ŷ [n],

where w(t,n) is square summable in n for every t ∈ R.
Standard linear estimation theory leads to the following propo-
sition:

Proposition 2. Consider the system in Fig. 4. The minimal
time-averaged MSE (10) in linear estimation of X(·) from Ŷ [·]
is given by

mmse,mmseX |Ŷ ( fs,Ha) (11)

= σ
2
X −

1
fs

∫ fs
2

− fs
2

∑k∈Z S2
X ( f − fsk) |Ha ( f − fsk)|2

∑k∈Z SX ( f − fsk) |Ha ( f − fsk)|2 +σ2
η/ fs

d f

Proof: see Appendix B.

Note that in Proposition 2 we have not limited ourselves to
band-limited input processes or to sub-Nyquist sampling. An
expression for the optimal estimator w?(t,n) can be derived
from the proof. It can be shown to be of the form

w?(t,n) = w(t−n/ fs),

where the Fourier transform of w(t) is

W ( f ) =
H∗a ( f )SX ( f )

∑k∈Z |Ha( f )|2 SX ( f − fsk)+σ2
η/ fs

.

The details are given in [15].

Using Hölder’s inequality and monotonicity of the function
x→ x

x+1 , the integrand in (11) can be bounded for each f in
the integration interval (− fs/2, fs/2) by

(S?( f ))2

S?( f )+σ2
η/ fs

, (12)

where
S?( f ) = sup

k∈Z
SX ( f − fsk) |Ha ( f − fsk)|2 . (13)

This leads to a lower bound on mmseX |Ŷ ( fs,Ha). Under
the assumption that SX ( f ) is unimodal in the sense that it
is symmetric and non-increasing for f > 0, for each f ∈
(− fs/2, fs/2) the supremum in (13) is obtained for k = 0.
This implies that (12) is achievable if the pre-sampling filter
is a low-pass filter with cut-off frequency fs/2, namely

H?
a ( f ) =

{
1, | f | ≤ fs/2,
0, otherwise.

(14)

This choice of Ha( f ) in (11) leads to the following:

mmse?X |Y ( fs) =mmseX ( fs)+
∫ fs

2

− fs
2

SX ( f )
1+SNR( f )

d f , (15)

where mmseX ( fs) is defined in (2) and

SNR( f ), fsSX ( f )/σ
2
η , − fs

2
≤ f ≤ fs

2
. (16)

Henceforth, we will consider only processes with unimodal
PSD, so that the MMSE under optimal pre-sampling filtering
is given by (15). See [4] for the optimization of the
expressions of the form (11) in the case where SX ( f ) is not
unimodal.

Since the SNR increases linearly in fs, the MMSE of X(·)
give Ŷ [·] decreases by a factor of 1/ fs for fs > 2 fB provided
all other parameters are independent of fs. In the next section
we study (15) when, in addition, the quantizer resolution is
inversely proportional to fs, so as to keep a constant bitrate at
the output as fs varies.

III. MAIN RESULT: PCM UNDER A FIXED BITRATE

In the PCM A/D conversion system of Fig. 3 with sampling
frequency fs and a quantizer resolution of q bits per sample,
the amount of memory per time unit, or the bitrate at the
output of the system, equals

R , q fs

bits per time unit. Since in this model the A/D converter must
use at least one bit per sample, we limit fs to be smaller than
the bitrate R. In this section we fix R and study the MMSE as a
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− 1
2

Sη (e2πiφ )

1
2

Ha(φ fs)

quantization noise

− fB
fs

fB
fs

S Y
(e

2π
iφ )

(a) fs > 2 fB

− 1
2

Sη (e2πiφ )

1
2

Ha(φ fs)

mmseX ( fs)

− fB
fs

fB
fs

S Y
(e

2π
iφ )

φ

(b) fs < 2 fB

Fig. 5: Spectral interpretation of Proposition 3: no sampling
error when sampling above the Nyquist rate, but intensity of
in-band quantization noise increases.

function of the sampling frequency fs. Under this assumption,
the variance of the quantization noise from (6) satisfies

σ
2
η =

c0

(2q−1)2 =
c0

(22R/ fs −1)2 . (17)

The linear MMSE in estimating X(·) from Ŷ under the
optimal pre-sampling gives rise to an approximation to the
operational distortion-function of the PCM, which we denote
as D̃( fs,R). From (15) and (17) we obtain the following
expression for D̃( fs,R):

Proposition 3. The MMSE in estimating X(·) from Ŷ [·]
assuming (A1) and R = q fs is as follows:

D̃( fs,R) =mmseX ( fs)+
∫ fs

2

− fs
2

SX ( f )
1+SNR( f )

d f (18)

where

SNR( f ) = SNR fs,R( f ) = fs

(
2R/ fs −1

)2 SX ( f )
c0

(19)

and mmseX ( fs) is given by (2).

We will denote the two terms in the RHS of (18) as
the sampling error and the quantization error, respectively.
Fig. 6 shows the MMSE (18) as a function of fs for a
given R and various PSDs compared to their corresponding
quadratic Gaussian iDRF under sub-Nyquist sampling (1). In
Fig. 6 and in other figures throughout, we use the c0 in (7)
which corresponds to an optimal point density of the Gaussian
distribution.

A. An Optimal Sampling Rate

The quantization error in (18) is an increasing function of fs,
whereas the sampling error mmseX ( fs) decreases in fs. This
situation is illustrated in Fig. 5. The sampling rate f ?s that
minimizes (18) is obtained at an equilibrium point where the
derivatives of both terms are of equal magnitudes. Fig. 6 shows
that f ?s depends on the particular form of the input signal’s
PSD. If the signal is band-limited, we obtain the following
result:

Proposition 4. If SX ( f ) = 0 for all | f |> fB, then the sampling
rate f ?s that minimizes D̃( fs,R) is not bigger than 2 fB.

Proof: Note that SNR fs,R( f ) is an increasing function
of fs in the interval 0 ≤ fs ≤ R. Since we assume X(·) is
band-limited, we have mmseX ( fs) = 0 for fs ≥ 2 fB. This
implies that D̃(2 fB,R)≤ D̃( fs,R) for all fs > 2 fB.

How much f ?s is below 2 fB is determined by the derivative
of mmseX ( fs), which equals −2SX ( fs/2). For example, in the
case of the rectangular PSD:

Π( f ) =
σ2

2 fB

{
1 | f | ≤ fB,

0 | f |> fB,
(20)

the derivative of −2SX ( fs/2) for fs < 2 fB is −σ2. The
derivative of the second term in (18) is smaller than σ2 for
most choices of system parameters1. It follows that 0 is in
the sub-gradient of D̃( fs,R) at fs = 2 fB, and thus f ?s = 2 fB,
i.e., Nyquist rate sampling is optimal when the energy of the
signal is uniformly distributed over its bandwidth. Two more
input signal examples are given below.

Example 1 (triangular PSD). Consider an input signal PSD

Λ( f ) =
σ2

fB
max

{
1− f

fB
,0
}
. (21)

For any fs ≤ 2 fB, we have

mmseX ( fs) = σ
2− σ2

fB

(
fs−

f 2
s

4 f B

)
.

Since the derivative of mmseX ( fs), which is −2Λ( fs/2),
changes continuously from 0 to −2σ2/ fB as fs varies from
2 fB to 0, we have 0< f ?s < 2 fB. The exact value of f ?s depends
on R and the ratio σ2/c0. It converges to 2 fB as the value of
any of these two increases.

Example 2 (PSD of unbounded support). Consider an input
signal PSD of the form

SG( f ) =
σ2
√

2π f0
e
( f/ f0)

2

2 , f ∈ R, (22)

where f0 > 0. For a process with the PSD (22) there exists
a non-zero sampling error mmseX ( fs) for any finite sampling
rate fs, and therefore the argument in Proposition 4 does not
hold.

We can compare f ?s in each of the examples above to
the minimal sampling rate fDR that achieves the quadratic
distortion-rate function of a Gaussian process with the same
PSD, given by (4). In the case of the PSD (21), the relation
between fDR and R was derived in [3]:

R =
σ2

ln2

(
log

1

1− fDR
2 fB

− fDR

2 fB

)
. (23)

1This holds if 1 > c0
σ2

(
20.5R/ fB −1

)−2
.
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Fig. 6: MMSE as a function of fs for a fixed R and various
PSDs, which are given in the small frames. The dashed curves
are the corresponding iDRF D( fs,R) given by (1). The rates
f ?s and fDR corresponds to the ? and �, respectively.
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Fig. 7: Optimal sampling rates f ?s and fDR versus 3 R for the
process with PSD Λ( f ) of (21).

We plot f ?s and the corresponding fDR in Fig. 7, as a function
of R. It can be seen that f ?s is smaller than fDR, where both
approach 2 fB as R increases. In the case of the PSD (22), the
relation between fDR and R can be computed from (4). This
is plotted together with f ?s versus R in Fig. 8. Note that since
SG( f ) is not band-limited, fDR is not bounded in R since there
is no sampling rate that guarantees perfect reconstruction for
this signal.

B. Discussion

Under a fixed bitrate constraint, oversampling no longer
reduces the MMSE since increasing the sampling rate reduces
the quantizer resolution and increases the magnitude of the
quantization noise. As illustrated in Fig. 5, for any fs below
the Nyquist rate the bandwidth of both the signal and the
noise occupies the entire digital frequency domain, whereas

the magnitude of the noise decreases as more bits are used in
quantizing each sample.

It follows that f ?s cannot be larger than the Nyquist rate as
stated in Proposition 4, and is strictly smaller than Nyquist
when the energy of X(·) is not uniformly distributed over
its bandwidth, as in Example 1. In this case, some distortion
due to sampling is preferred in order to increase the quantizer
resolution. In other words, restricted to scalar quantization, the
optimal rate R code is achieved by sub-sampling. This behav-
ior of D̃( fs,R) is similar to the behavior of the information
theoretic bound D( fs,R), as both provide an optimal sampling
rate which balances sampling error and lossy compression
error. On the other hand, oversampling introduces redundancy
into the PCM representation, and yields a worse distortion-rate
code than with fs = f ?s . In this aspect the behavior of D̃( fs,R)
is different than D( fs,R), since the latter does not penalize
oversampling2.

The trade-off between sampling rate and quantization pre-
cision is particularly interesting in the case where the signal
is not band-limited: Although there is no sampling rate that
guarantees perfect reconstruction, there is still a sampling rate
that optimizes the aforementioned trade-off and minimizes the
MMSE under a bitrate constraint.

The similarity between f ?s and fDR as a function of R
suggests that in order to implement a sub-Nyquist A/D con-
verter that operates close to the minimal information theoretic
sampling rate fDR, the principle of trading quantization bits
with sampling rate must be taken into account. The observation
that

f ?s ≤ fDR (24)

in Examples 1 and 2 raises the conjecture as to whether (24)
holds in general. This may be explained by the diminishing
effect of reducing the sampling rate on the overall error. In
other words, the fact that D̃( f ?s ,R) ≥ D(R) implies that a
distortion-rate achievable scheme is more sensitive to changes
in the sampling rate than the sub-optimal implementation
of A/D conversion via PCM. The dependency of f ?s in
the spectral energy distribution SX ( f ) has a time-domain
explanation: for a fixed variance σ2

X , two consecutive time
samples taken at the Nyquist rate are more correlated (in
their absolute value) when the PSD is not flat. Consequently,
more redundancy is present after sampling than in the case
where the PSD is flat. The main discovery of this paper
is that part of this redundancy can be removed simply
by sub-sampling, where this is in fact the optimal way to
remove it when we are restricted to the PCM setting of Fig. 3.

IV. CONCLUSIONS

A/D conversion via pulse-code modulation under a fixed
bitrate at the output introduces a trade-off between the

2This is because in the system model of Fig. 1, the encoder has the freedom
to discard redundant information.

3The curves do not go further left since in our model we restrict the
sampling rate to be smaller than the output bitrate R.

1088



4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

3.5

4

R
2 f0

f ?s
2 f0

f DR

f ?s

Fig. 8: Optimal sampling rate f ?s and fDR versus3 R for the
process with PSD (22).

sampling rate and the number of bits we use to quantize each
sample. The optimal sampling rate that minimizes the MMSE
obtained as a result of this trade-off is lower than the Nyquist
rate. That is, our analysis shows that to minimize MMSE
between the A/D input and output, some sampling distortion
is preferred in order to increase the quantizer resolution.
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APPENDIX A

Proof of Proposition 1:

Let X [·] and Z[·] be two jointly stationary processes and let

Y [n] = X [n]+Z[n], n ∈ Z.

The MMSE under linear estimation of X [·] from Y [·] is given
by

Ecorr =
∫ 1

2

− 1
2

SX
(
e2πiφ

)
SZ
(
e2πiφ

)
−
∣∣SXZ

(
e2πiφ

)∣∣2
SX (e2πiφ )+SZ (e2πiφ )+2ℜSXZ (e2πiφ )

dφ . (25)

We will show that Ecorr cannot exceeds the MMSE when the
correlation between X(·) and Z(·) is zero. Let

SXZ
(
e2πiφ)= ℜSXZ

(
e2πiφ)+ iℑSXZ

(
e2πiφ)=: u+ iv,

where u,v ∈ R. The integrand in (25) can be written as

SX
(
e2πiφ

)
Sη

(
e2πiφ

)
−u2− v2

SX (e2πiφ )+SZ (e2πiφ )+2u
. (26)

Since SX
(
e2πiφ

)
Sη

(
e2πiφ

)
≥
∣∣SXZ

(
e2πiφ

)∣∣2 we have

u2 + v2 ≤ SX
(
e2πiφ)Sη

(
e2πiφ) . (27)

Note that (26) is positive and maximizing it is equivalent to
maximizing (25). Since (26) is convex in u and v, it obtains its
maximum over the boundary defined by (27). Specifically, the
maximum of (26) in the domain (27) is obtain at u = v = 0.
This implies that

Ecorr ≤
SX
(
e2πiφ

)
SZ
(
e2πiφ

)
SX (e2πiφ )+SZ (e2πiφ )

, (28)

and the RHS of (28) is the expression for the MMSE under
linear estimation when SXZ

(
e2πiφ

)
≡ 0, i.e., when Z(·) is

uncorrelated with X(·).
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APPENDIX B
In this Appendix we provide the proof of Proposition 2.

For 0≤ ∆≤ 1 define

X∆[n], X ((n+∆)Ts) , n ∈ Z,

where Ts , f−1
s . Also define X̂∆[n] to be the optimal MSE

estimator of X∆[n] from Ŷ [·], that is

X̂∆[n] = E
[
X∆[n]|Ŷ [·]

]
, n ∈ Z.

The MSE in (10) can be written as

mmseX |Ŷ = lim
N→∞

1
2N +1

∫ N+1

−N
E
(
X(t)− X̂(t)

)2 dt

= lim
N→∞

1
2N +1

N

∑
n=−N

∫ 1

0
E
(
X ((n+∆)Ts)− X̂ ((n+∆)Ts)

)2 d∆

= lim
N→∞

1
2N +1

N

∑
n=−N

∫ 1

0
E
(
X∆[n]− X̂∆[n]

)2 d∆

=
∫ 1

0
E
(
X∆[n]− X̂∆[n]

)2
∆. (29)

Note that SX∆

(
e2πiφ

)
= SY

(
e2πiφ

)
and X∆[·] and Ŷ [·] are jointly

stationary with cross-PSD

SX∆Ŷ

(
e2πiφ)= SX∆

(
e2πiφ)= fs ∑

k∈Z
SX ( fs(k−φ))e2πi∆(k−φ).

Denote by SX∆|Ŷ
(
e2πiφ

)
the PSD of the estimator obtained by

the discrete Wiener filter for estimating X∆[·] from Ŷ [·]. We
have

SX∆|Ŷ
(
e2πiφ)= SX∆Ŷ

(
e2πiφ

)
S∗X∆Ŷ

(
e2πiφ

)
SŶ (e2πiφ )

= ∑
n,k

f 2
s SXa ( fs(k−φ))SXa ( fs(n−φ))e2πi∆(k−n)

SY (e2πiφ )+Sη (e2πiφ )
(30)

Where SXa( f ) = SX ( f ) |Ha( f )|2 is the PSD of the process at
the output of the analog filter. The estimation error in Wiener
filtering is given by

E
(
X∆[n]− X̂∆[n]

)2

=
∫ 1

2

− 1
2

SX∆

(
e2πiφ)dφ −

∫ 1
2

− 1
2

SX∆|Ŷ
(
e2πiφ)d phi

= σ
2
X−

∫ 1
2

− 1
2

SX∆|Ŷ
(
e2πiφ)dφ . (31)

Equations (29), (30) and (31) leads to

mmseX |Ŷ =
∫ 1

0
E
(
X∆[n]− X̂∆[n]

)2
∆

= σ
2
X −

∫ 1
2

− 1
2

∫ 1

0
SX∆|Ŷ

(
e2πiφ)dφ

a
= σ

2
X −

∫ 1
2

− 1
2

fs ∑k∈Z S2
Xa
( fs(k−φ))

SY (e2πiφ )+Sη (e2πiφ )
dφ , (32)

where (a) follows from (30) and the orthogonality of the
functions

{
e2πxk,k ∈ Z

}
over 0 ≤ x ≤ 1. Equation (11) is

obtained from (32) by changing the integration variable from
φ to f = φ fs.
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